Search results for "Green-Ampt model"
showing 5 items of 5 documents
A rational runoff coefficient for a revisited rational formula
2019
The Rational Formula (RF) is probably the most frequently applied equation in practical hydrology to compute the peak discharge, due to its simplicity and effective compromise between theory and data availability. Thus, after more than a century, the estimation of peak discharge through the RF is still an important and challenging issue in hydrology. The RF assumes response linearity and sometimes assumes that the return period does not depend on the runoff coefficient and neglects the time to ponding and the antecedent moisture condition. Moreover, the RF requires the critical duration of rainfall and the runoff coefficient to be estimated, both of which are highly controversial. This pape…
La formula razionale rivisitata
2019
The Rational Formula (RF), also known as CIA formula, is probably the most applied equation in practical hydrology to compute the peak discharge, due to its simplicity and effective compromise between theory and data availability. The RF assumes the linearity of the hillslope response, neglects the time to ponding and the antecedent soil moisture condition (ASMC), concentrates the infiltration effect in the runoff coefficient (C) which estimation is highly controversial, since it is based on qualitative indications. This paper proposes an advanced rational formula that makes it possible to derive the peak discharge at the hillslope scale, where the above assumptions are relaxed and which de…
SCS Curve Number and Green-Ampt Infiltration Models
2019
Soil Conservation Service curve number (SCS-CN) and Green-Ampt (GA) infiltration models are probably the most applied equations in practical hydrology to compute the amount of direct runoff from rainfall. Both models are very simple, require few parameters, and present drawbacks and advantages. The empirical CN model concentrates the infiltration effect in the curve number and in the so-called soil hydrological groups, which have been widely characterized for different soil types, land cover, and antecedent soil moisture conditions (ASMCs), although the latter was considered ambiguous, whereas soil hydrological characteristics, including ASMC, are taken into account for the simplified physi…
Modeling the probability distribution of peak discharge for infiltrating hillslopes
2017
Hillslope response plays a fundamental role in the prediction of peak discharge at the basin outlet. The peak discharge for the critical duration of rainfall and its probability distribution are needed for designing urban infrastructure facilities. This study derives the probability distribution, denoted as GABS model, by coupling three models: (1) the Green-Ampt model for computing infiltration, (2) the kinematic wave model for computing discharge hydrograph from the hillslope, and (3) the intensity-duration-frequency (IDF) model for computing design rainfall intensity. The Hortonian mechanism for runoff generation is employed for computing the surface runoff hydrograph. Since the antecede…
Runoff coefficients to predict peak discharge at hillslope scale: A small contribution to theoretical hydrology
2018
The science of hydrology holds a central role in the field of environmental Earth science, being intimately connected to meteorology, climatology, hydrogeology and ecology. In particular, the knowledge of hillslope hydrology is fundamental for understanding the flood phenomenon, for predicting the peak discharge and its probability distribution, which is necessary in many practical applications (design of hydraulic structures, urban, extra-urban planning, etc.). Using different approaches, there have been a multitude of studies on the hydrologic response at hillslope scale. One approach for deriving the hillslope response utilizes, in a distributed form, the differential equations of unstea…